C13D	0.5429 (4)	-0.4051(4)	0.2482 (3)	5.5 (1)*
C18D	0.6340 (3)	-0.4828(4)	0.3939 (3)	4.5 (1)
C20D C22D	0.6359 (4) 0.6789 (3)	-0.6128(4) -0.4632(5)	0.2977 (3)	5.5 (1) 5.0 (1)
C24D	0.8097 (4)	-0.4785(5)	0.1149 (3)	6.6 (1)

Table 2. Selected geometric parameters (Å, °) for
molecule 1 and selected torsion angles (°)

O15AN14A	1.225 (6)	C3AC4A	l	1.396 (6)
O16A—N14A	1.207 (5)	C4A—C5A	1	1.411 (5)
O23A—C22A	1.399 (6)	C5AC6A	l	1.389 (6)
O23A—C24A	1.409 (6)	C5AC7A	1	1.518 (6)
N10AC4A	1.357 (5)	C7AC8A	1	1.544 (6)
N10AC9A	1.460 (6)	C7A-C17	A	1.503 (6)
N10A-C11A	1.446 (6)	C8AC9A	1	1.558 (6)
N14A—C1A	1.450 (6)	C8AC18	3A	1.480 (6)
N19AC18A	1.135 (6)	C8AC20)A	1.463 (7)
N21A-C20A	1.130(7)	C9AC13	3A	1.526 (6)
C1AC2A	1.374 (6)	C9AC22	2A	1.529 (6)
C1AC6A	1.386 (7)	C11AC1	.2A	1.515 (8)
C2AC3A	1.370 (6)	C12AC1	3A	1.514 (8)
C22A—O23A—C24A	111.7 (4)	C5AC7A	4—C17A	114.1 (3)
C4A-N10A-C9A	122.3 (3)	C8AC7A	1C 17A	112.1 (4)
C4A-N10A-C11A	124.4 (4)	C7AC8A	1C9A	110.9 (3)
C9A-N10A-C11A	112.1 (3)	C7AC8A	AC18A	108.5 (3)
O15A—N14A—O16A	121.8 (4)	C7AC8A	1C20A	111.1 (4)
O15AN14AC1A	118.6 (5)	C9AC8A	4C18A	108.9 (4)
016A—N14A—C1A	119.6 (4)	C9AC8A	1-C20A	109.4 (3)
N14AC1AC2A	119.5 (4)	C18A—C8	3AC20A	108.0 (4)
N14A-C1A-C6A	118.3 (5)	N10AC9	9A—C8A	106.9 (3)
C2AC1AC6A	122.1 (4)	N10AC9	9AC13A	103.7 (3)
C1A-C2A-C3A	118.7 (5)	N10AC9	AC22A	111.5 (4)
C2A-C3A-C4A	121.3 (4)	C8AC9A	4C13A	113.6 (4)
N10AC4AC3A	119.5 (4)	C8A—C9/	4—C22A	112.4 (3)
N10AC4AC5A	121.2 (4)	C13AC9	0AC22A	108.5 (3)
C3AC4AC5A	119.3 (3)	N10A-C	11 <i>A</i> —C12A	103.8 (4)
C4AC5AC6A	119.1 (4)	C11AC1	2AC13A	103.7 (4)
C4A—C5A—C7A	121.6 (3)	C9A-C13	3A—C12A	103.1 (4)
C6AC5AC7A	119.3 (4)	N19AC	18AC8A	177.6 (5)
C1AC5A	119.4 (4)	N21AC	20AC8A	177.2 (5)
C5A—C7A—C8A	107.8 (3)	O23A-C22A-C9A		111.7 (3)
	Molecule 1	Molecule 2	Molecule 3	Molecule 4
(24-02-02)-02	179 1 (4)	172 4 (5)	-153 1 (5)	173 4 (5)
N10-C9-C22-023	42.9 (5)	171 7 (4)	489(6)	404(6)
C8_C9_C22_023	-771(5)	54 3 (5)	-72 0 (6)	-80 5 (5)
C13_C9_C22_023	1564 (4)	-744(5)	161 9 (4)	152 2 (4)
	10011 (7)	1 (3)	10117 (7)	

The O, N and C atoms of the cyano and methoxymethyl groups were refined with anisotropic displacement parameters. The atoms of the phenyl ring in molecule 4 were also refined anisotropically in view of their rather large thermal motion. H atoms were placed at calculated positions (C—H 0.95 Å) and treated as riding atoms.

The structure was solved using *MULTAN* (Germain, Main & Woolfson, 1971) and refined by full-matrix least squares. Weights for each reflection in the refinement were $w = 1/\sigma^2(F_o) = 4F_o^2/\sigma(F_o^2)$, $\sigma(F_o^2) = \sigma^2(I) + (pF_o^2)^2$; the value of the instability factor p was determined to be 0.03. All calculations were performed using *SDP* (B. A. Frenz & Associates Inc., 1983). Data collection used *CAD*-4 *EXPRESS* (Enraf-Nonius, 1992).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: AB1224). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- B. A. Frenz & Associates Inc. (1983). *Structure Determination Package*. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- Enraf-Nonius (1992). CAD-4 EXPRESS User Manual. Enraf-Nonius, Delft, The Netherlands.
- Germain, G., Main, P. & Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kelderman, E. (1993). Thesis, University of Twente, Enschede, The Netherlands.
- Kelderman, E., Noorlander-Bunt, H. G., van Eerden, J., Verboom, W. & Reinhoudt, D. N. (1991). Recl Trav. Chim. Pays-Bas, 110, 115-123.
- Kelderman, E., Verboom, W., Engbersen, J. F. J., Harkema, S., Heesink, G. J. T., Lehmusvaara, E., van Hulst, N. F., Reinhoudt, D. N., Derhaeg, L. & Persoons, A. (1992). Chem. Mater. 4, 626–631.
- Motherwell, W. D. S. & Clegg, W. (1978). *PLUTO. Program* for *Plotting Molecular and Crystal Structures*. University of Cambridge, England.
- Nijhuis, W. H. N., Verboom, W., Abu El-Fadl, A., Harkema, S. & Reinhoudt, D. N. (1989). J. Org. Chem. 54, 199-209.
- Nijhuis, W. H. N., Verboom, W., Abu El-Fadl, A., van Hummel, G. J. & Reinhoudt, D. N. (1989). J. Org. Chem. 54, 209-216.
- Nijhuis, W. H. N., Verboom, W., Reinhoudt, D. N. & Harkema, S. (1987). J. Am. Chem. Soc. 109, 3136-3138.
- Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1996). C52, 460-462

Dimethyl(2-{[2,3-di(*p*-tolyl)-5-methyl-1indenylidene](*p*-tolyl)methyl}-5-methoxyphenylmethyl)amine†

JUAN M. FERNÁNDEZ-G, KATIA SOLORZANO-MALDONADO, KALIYAMOORTHY PANNEERSELVAM, ADELA RODRÍGUEZ-ROMERO AND MANUEL SORIANO-GARCÍA

Instituto de Química, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, México DF 04510, México

(Received 25 October 1994; accepted 24 July 1995)

Abstract

In the title compound, $C_{42}H_{41}NO$, all the phenyl rings are twisted out of the plane of the indenylidene ring. The molecules are held together in the crystal by van der Waals interactions.

Comment

It has been reported that the reaction between cyclopalladated N,N-dimethylbenzylamine bis(acetonitrile)tetrafluoroborate and diphenylacetylene gives a polycyclic compound as its main product (Tao, Sil-

[†] Contribution No. 1328 of the Instituto de Química, UNAM.

verberg. Rheingold & Heck, 1989). It is well known, however, that some reactions of organometallic compounds having acetylene ligands give reaction products whose structure and/or conformation may depend on the type of acetylene involved (Maassarani, Pfeffer & Le Borgne, 1987; Dupont & Pfeffer, 1988). We are interested in the organometallic chemistry of transition elements with acetylene ligands and carried out the reaction between cyclopalladated N.N-dimethyl-5-methoxybenzylamine bis(acetonitrile) hexafluorophosphate and di(p-tolyl)acetylene. In order to contrast the type of products obtained, we compared this reaction with that described by Tao et al. (1989). The title compound, (I), was isolated from the four products obtained.

Bond distances and angles within the molecule are quite regular, with an average C-C distance of 1.382 (5) Å within the four phenyl rings. The rings are planar with a maximum deviation of 0.024 Å. The molecule is well ordered, with methyl groups C36, C37, C40 and C42 having relatively large thermal motion. The interplanar angles between the indenylidene ring,

Fig. 2. A stereoview of the molecular packing in the unit cell viewed down the c axis.

C1-C9, and the phenyl rings C11-C16, C17-C22, C23-C28 and C29–C34 are 87.5(1), 42.4(1), 42.8(1) and $61.4(1)^{\circ}$, respectively. In the crystal, the molecules of the title compound are held together by van der Waals interactions. A C— $H \cdots N$ intermolecular contact is also present: $C(7) \cdots N(1)(-x, -y, -z) 3.473(5) \text{ Å}$.

Experimental

The title compound was recrystallized from methanol/dichloromethane solution.

Crystal data	
C ₄₂ H ₄₁ NO	Cu $K\alpha$ radiation
$M_r = 575.76$	$\lambda = 1.54178 \text{ Å}$
Triclinic	Cell parameters from 23
Pī	reflections
a = 12.3228(13) Å	$\theta = 35 - 40^{\circ}$
b = 13.0782 (6) Å	$\mu = 0.511 \text{ mm}^{-1}$
c = 11.6694 (12) Å	T = 293 (2) K
$\alpha = 98.505(6)^{\circ}$	Chunk
$\beta = 105.878 \ (8)^{\circ}$	$0.40 \times 0.35 \times 0.35$ mm
$\gamma = 106.988~(6)^{\circ}$	Orange
$V = 1676.1 (3) Å^3$	-
<i>Z</i> = 2	
$D_r = 1.141 \text{ Mg m}^{-3}$	

Data collection

Rigaku AFC-5R diffractometer ω scans Absorption correction: none 5258 measured reflections 4987 independent reflections 3754 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0234$

Refinement

Refinement on F^2 R(F) = 0.0652 $wR(F^2) = 0.2186$

 $\theta_{\rm max} = 60.12^{\circ}$ $h = 0 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -13 \rightarrow 12$ 2 standard reflections monitored every 100 reflections frequency: 60 min intensity decay: 3%

 $(\Delta/\sigma)_{\rm max} = -0.029$ $\Delta \rho_{\rm max} = 0.686 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.242 \ {\rm e} \ {\rm \AA}^{-3}$

atom-labelling scheme and 50% probability displacement ellipsoids.

S = 1.106 Atomic scattering factors		g factors	C6C7	1.379 (5)	C26—C41	1.511 (5)		
4935 refl	ections		from International Tables		C6—C39	1.515 (4)	C27C28 C29C34	1.383 (5)
397 para	meters		for Crystallography (1992.		C2C8	1.395 (5)	$C_{29} = C_{30}$	1.386 (4)
H atoms	refined isotr	opically	Vol. C. Tables	4.2.6.8 and	C10-C17	1.472 (4)	C30-C31	1.372 (5)
$m = 1/f_{\pi}$	$2(E^2) + (0.0)$	$(217D)^2$	6114)		C10-C11	1.504 (4)	C31-C32	1.369 (5)
w = 1/10	$(\Gamma_0) + (0.0)$	01/1)	0.1.1.4)		C11—C16	1.390 (5)	C32—C33	1.382 (5)
+ 1.	29878	a = 2 / /a			C11C12	1.392 (5)	C32C40	1.496 (5)
where	$P = (F_o^2 +$	$2F_{c}^{2})/3$			C12—C13	1.393 (5)	C33C34	1.373 (5)
	- ·			· ·	C12 - C33	1.517(4) 1178(3)	01	116.1 (3)
Table 1.	. Fractiona	il atomic co	ordinates and	equivalent	C35-N1-C36	117.1 (3)	C13-C14-C15	119.5 (3)
	isotropic d	lisplacement	parameters (A	Ã ²)	C35-N1-C37	106.4 (3)	C16-C15-C14	119.5 (3)
	1	,	•		C36—N1—C37	105.0 (4)	C15-C16-C11	121.9 (3)
	U_{eq}	$= (1/3)\Sigma_i\Sigma_jU$	$a_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j.$		C10-C1-C9	125.4 (3)	C22C17C18	117.2 (3)
	~		7	11.	C10-C1-C2	129.3 (3)	C22-C17-C10	122.1 (3)
01	-0.0414(2)	-0.0419(2)	0.3312(3)	0.0932 (9)	C9-C1-C2	105.1 (3)	C18 - C17 - C10	120.7(3)
NI	0.2205 (3)	-0.1122(2)	0.0815 (3)	0.0821 (9)	C_{3}	124.1 (3)	C_{1}^{2}	121.0(3) 1214(3)
C1	0.3758 (3)	0.3272 (2)	0.2352 (3)	0.0532 (7)	$C_{3} - C_{2} - C_{1}$	1264(2)	C19-C20-C21	118.0 (3)
C2	0.4756 (3)	0.4324 (2)	0.2563 (3)	0.0515 (7)	C2C3C4	109.4 (3)	C19-C20-C42	120.7 (3)
C3	0.4330 (3)	0.4959 (2)	0.1860 (3)	0.0536 (7)	C2C3C29	129.0 (3)	C21-C20-C42	121.4 (3)
C4	0.3055 (3)	0.4363 (3)	0.1140 (3)	0.0573 (8)	C4—C3—C29	121.3 (2)	C20-C21-C22	121.1 (3)
C5	0.2274 (3)	0.4661 (3)	0.0269(3)	0.06/5(9)	C5-C4-C9	122.0 (3)	C21-C22-C17	121.1 (3)
C6	0.1083(3)	0.39/0(3)	-0.0284(3)	0.0730(10)	C5-C4-C3	129.8 (3)	C28C23C24	117.5 (3)
C/	0.0703(3) 0.1478(3)	0.3013(3) 0.2697(3)	0.0087 (4)	0.0704 (9)	C9-C4-C3	108.2 (3)	C28C23C2	121.1 (2)
60	0.1470(3)	0.2097(3)	0.1495(3)	0.0582(8)	C4C5C6	119.8 (3)	$C_{24} - C_{23} - C_{2}$	121.4(3)
C10	0.3793(3)	0.2353(2)	0.2763 (3)	0.0546 (7)	$C_7 = C_6 = C_{30}$	118.3(3)	$C_{23} - C_{24} - C_{23}$	121.1(3) 121.3(3)
C11	0.2655 (3)	0.1559 (3)	0.2815 (3)	0.0579 (8)	$C_{1} = C_{0} = C_{39}$	121.4(3) 120.3(3)	C20	121.5(3) 1176(3)
C12	0.2087 (3)	0.0477 (3)	0.2103 (3)	0.0652 (9)	$C_{3} = C_{0} = C_{3}$	120.3(3) 122.8(3)	C25 - C26 - C21	121.1 (4)
C13	0.1047 (3)	-0.0186 (3)	0.2252 (4)	0.0727 (10)	C9	118.7 (3)	C27-C26-C41	121.2 (4)
C14	0.0587 (3)	0.0196 (3)	0.3104 (3)	0.0696 (9)	C8-C9-C4	118.4 (3)	C26-C27-C28	121.3 (3)
C15	0.1155 (3)	0.1262 (3)	0.3820 (4)	0.0745 (10)	C8-C9-C1	133.5 (3)	C27—C28—C23	121.1 (3)
C16	0.2168(3)	0.1933(3)	0.3663(3)	0.06/2(9)	C4C1	107.9 (3)	C34—C29—C30	116.8 (3)
C18	0.4902(3)	0.2110(2) 0.1591(3)	0.3202(3) 0.4217(3)	0.0537(7)	C1-C10-C17	124.3 (3)	C34—C29—C3	121.8 (3)
C19	0.6100(4)	0.1421(3)	0.4738(4)	0.0827(11)	CI = CI0 = CII	119.3 (3)	$C_{30} - C_{29} - C_{30}$	121.4(3) 121.7(3)
C20	0.7054 (4)	0.1748 (3)	0.4322 (4)	0.0784 (10)		110.2(3)	C_{32} C_{31} C_{30} C_{30}	121.7(3)
C21	0.6912 (3)	0.2229 (3)	0.3339 (3)	0.0660 (9)	C10-C11-C12 C16-C11-C10	117.0(3)	C31-C32-C33	117.6 (3)
C22	0.5850 (3)	0.2398 (3)	0.2807 (3)	0.0575 (8)	C12-C11-C10	124.5 (3)	C31—C32—C40	121.1 (3)
C23	0.5969 (3)	0.4708 (2)	0.3502 (3)	0.0515 (7)	C11-C12-C13	119.1 (3)	C33C32C40	121.3 (4)
C24	0.6127 (3)	0.4577 (2)	0.4689 (3)	0.0555 (8)	C11-C12-C35	122.1 (3)	C34—C33—C32	121.1 (3)
C25	0.7260(3)	0.4959(3)	0.5570(3)	0.0644(9)	C13-C12-C35	118.6 (3)	C33C34C29	121.6 (3)
C20	0.8273(3)	0.5485 (3)	0.3304(3) 0.4125(3)	0.0074(9)	C14-C13-C12	121.5 (3)	N1-C35-C12	114.5 (3)
C28	0.6989(3)	0.5238 (3)	0.3238(3)	0.0607 (8)	01-014-013	124.4 (4)		
C29	0.4936 (3)	0.6110 (3)	0.1853 (3)	0.0535 (7)	Data collection:	Rigaku AFC	-5R software. Cell	refinement:
C30	0.5042 (3)	0.6395 (3)	0.0781 (3)	0.0675 (9)	Rigaku AFC-5R	software. D	ata reduction: Riga	aku AFC-5R
C31	0.5557 (4)	0.7471 (3)	0.0757 (3)	0.0722 (10)	software Progr	am(s) used t	o solve structure:	SHELXTL-
C32	0.5953 (4)	0.8313 (3)	0.1788 (4)	0.0722 (10)	Plus (Sheldrick	1000) Prog	ram(s) used to refi	ne structure.
C33	0.5873(4)	0.8036 (3)	0.2868 (4)	0.0796 (11)	CUEIVTI Ding	Moleculer a	monbios: SHELVTI	Plus Soft.
C34	0.5375(3)	0.0957(3)	0.2894(3) 0.1003(4)	0.0082(9) 0.0919(13)	SHELAIL-FIUS.	Molecular g	apines. SHELATE	SUEVO2
C36	0.2301(4) 0.2393(6)	-0.1609(4)	-0.0239(5)	0.0717(13)	ware used to p	orepare materi	al for publication	SHELAL95
C37	0.3025 (6)	-0.1372 (6)	0.1875 (6)	0.153 (2)	(Sheldrick, 1993	5).		
C38	-0.0993 (4)	-0.1535 (4)	0.2632 (4)	0.0983 (14)				
C39	0.0236 (4)	0.4259 (4)	-0.1286 (4)	0.0992 (14)	Lists of structure	factors, anisot	ropic displacement p	arameters, H-
C40	0.6478 (5)	0.9489 (3)	0.1752 (5)	0.111 (2)	atom coordinates,	complete geon	netry and torsion ang	les have been
C41	0.9509 (4)	0.5919 (4)	0.6277 (4)	0.0982 (14)	deposited with the	IUCr (Referenc	e: SZ1037). Copies m	ay be obtained
C42	0.8223 (4)	0.1585 (5)	0.4927 (3)	0.124 (2)	through The Mana	iging Editor, Inte	ernational Union of C	rystallography,
Table 2. Selected geometric parameters $(\text{\AA}, \circ)$				5 Abbey Square, (Chester CH1 2F	IU, England.		
01		1.368 (4)	- 13	1.374 (5)				
01 - C38		1.418 (4) C	C14—C15	1.378 (5)	References			
N1-C35		1.400 (4) C	C15—C16	1.376 (5)		C N (1000)	I Chan Car Dal	
N1-C36		1.408 (5)	C17—C22	1.388 (4)	Dupont, J. & Pre	пег, м. (1988)	. J. Chem. Soc. Dal	on Trans. pp.
N1—C37		1.512 (6)	C17—C18	1.389 (4)	2421-2429.			
C1-C10		1.367 (4) C	C18—C19	1.384 (5)	Maassarani, F., Pte	effer, M. & Le I	Borgne, G. (1987). 01	ganometattics,
CI-C9		1.485 (4)	.1 9 C 20	1.3/1 (0)	6 , 2029–2043.	(1000) 000013		ad Sugar f-
C2C2		1.400 (4) C	20 - 21	1.562 (5)	Sneidrick, G. M.	(1990). SHELX	LIL-FIUS. An Integral	eu system jor
$C_2 - C_{23}$		1.480 (3)	21—C22	1.383 (5)	Solving, Kefining	g ana Dispiaying	g Crysiai Structures fr Compony	omDyfacuon
C3C4		1.466 (4)	C23—C28	1.386 (4)	Shaldwich C M	y of Gottingen,	Ocilitatiy.	Rofinament of
C3—C29		1.474 (3)	C23—C24	1.388 (4)	Crustel Structure	(1773). SALLAI	555. 1 rogram jor the	v
C4C5		1.382 (4)	C24—C25	1.382 (5)	The W/ Silverba	ro I I Dhain	and A I & Upple	7. R F (1020)
C4C9		1.397 (5) (25-C26	1.381 (5)	Organomatallia	18, L. J., NICIII	goia, A. L. & HECK,	IX. I. (1707).
LJ-L0		1.300 (3) (.20-021	1.362 (3)	or gunomerunit.	J, J, 4550-4559	•	